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Motivated by recent experimental works, we investigate a system of vortex dynamics in an atomic

Bose-Einstein condensate (BEC), consisting of three vortices, two of which have the same charge.

These vortices are modeled as a system of point particles which possesses a Hamiltonian structure.

This tripole system constitutes a prototypical model of vortices in BECs exhibiting chaos. By using

the angular momentum integral of motion, we reduce the study of the system to the investigation of

a two degree of freedom Hamiltonian model and acquire quantitative results about its chaotic

behavior. Our investigation tool is the construction of scan maps by using the Smaller ALignment

Index as a chaos indicator. Applying this approach to a large number of initial conditions, we

manage to accurately and efficiently measure the extent of chaos in the model and its

dependence on physically important parameters like the energy and the angular momentum of the

system. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4882169]

Persistent circulating flow patterns in the form of vortices

are pertinent to a broad and diverse set of research themes

ranging from fluids and superfluids to nonlinear optics, sun-

spots, dust devils, etc. In the atomic physics realm of Bose-

Einstein condensates (BECs), a pristine physical setting has

emerged where it is possible to create and visualize the dy-

namics of single and multi-vortex patterns, including even

large scale vortex lattices. Lately, a focus of emphasis has

arisen on the study of few vortex patterns. Our aim here is

to study a prototypical setting, which goes beyond integra-

ble vortex dynamics and is prone, as parameters/initial con-

ditions are varied, to the appearance of chaos. It is that

appearance and development that we monitor and quantify

using the so-called Smaller ALignment Index (SALI).

I. INTRODUCTION

The study of two-dimensional particle dynamics result-

ing from a logarithmic interaction potential is a theme of

broad and diverse interest in Physics. Arguably, the most ca-

nonical example of both theoretical investigation and experi-

mental relevance is the exploration of fluid and superfluid

vortex patterns and crystals, as is evidenced, e.g., by the

review of Aref et al.1 and the book of Newton.2 However,

numerous additional examples ranging from electron col-

umns in Malmberg-Penning traps3 to magnetized, millimeter

sized disks rotating at a liquid-air interface4,5 are also charac-

terized by the same underlying mathematical structure and

hence present similar dynamical features.

In recent years, the field of atomic BECs6,7 has offered

an ideal playground for the realization of a diverse host of

configurations showcasing remarkable vortex patterns and

dynamics. The early efforts along this direction principally

focused on the existence and dynamical robustness/stability

properties of individual vortices (including multi-charge

ones that were generically identified as unstable in experi-

ments), as well as of large scale vortex lattices created upon

suitably fast rotation.8–11 Some of the early theoretical and

experimental efforts also touched upon few-vortex crys-

tals.12,13 Yet, it was not until the development of more recent

experimental techniques, such as the minimally destructive

imaging,14–16 the imaging of dragged laser beams through

the BEC,17 or the quadrupolar excitations spontaneously pro-

ducing multi-vortex states18 that few-vortex dynamics drew

a sharp focus of the research effort. It is worthwhile to note

that in this BEC context, some of the standard properties and

conservation laws of the vortex system19 still apply, includ-

ing, e.g., the angular momentum (i.e., the sum of the squared

distances of the vortices from the trap center multiplied by

their respective topological charge) and the Hamiltonian of

the vortex system. However, others such as the linear mo-

mentum are no longer preserved. This is due to the local vor-

tex precession term arising in the dynamics as a result of the

presence of the external (typically parabolic) trap.8,9

Motivated by the ongoing experimental developments,

and perhaps especially the work of Seman et al.,18 in the

recent work of Koukouloyannis et al.,20 a detailed study of

the transition from regular to progressively chaotic behavior

has been performed in the tripole configuration (consisting

of two vortices of one circulation and one of the opposite cir-

culation). This has been achieved by using a sequence of

Poincar�e sections with the angular momentum L of the

vortex system as a parameter. Notice that while this tripole
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system without the local BEC-trap induced precession is

integrable (see, e.g., the discussion of Aref and co-work-

ers19,21), here the absence of linear momentum conservation

renders chaotic dynamics accessible at this level. In this con-

text, the main bifurcations, which lead to the destabilization

of the system and the eventual appearance of chaotic behav-

ior, have been observed. Our aim in the present work is to

provide more quantitative results about the chaotic behavior

of the system for various energy levels. As a principal tool to

this effect, we will employ an efficient chaos detection

method, the so–called SALI.

Our study is structured as follows. In Sec. II, we briefly

present the setup of the theoretical particle model developed

earlier,15,16,20 which we will use in the present study. In Sec. III,

we present the numerical tools that we use in this work, namely,

the chaoticity index SALI and the scan maps that can be

derived by using this index. After that, in Sec. IV A, we perform

an extended dynamical study of the system for a typical value

of its energy h by using its angular momentum L as a parameter.

In this study, we concentrate mainly in the study of the evolu-

tion of the permitted area of motion and the chaoticity of the

system as the value of L varies. In addition, based on some

physical properties of our system, we argue that SALI is a more

relevant tool of investigation for this study than the maximum

Lyapunov exponent (mLE). In Sec. IV B, we generalize this

study in order to acquire a more global picture of the dynamics

of the system by including most of the physically meaningful

values of the energy of the system. Finally, we summarize our

findings and present some directions for future study in Sec. V.

II. THE MODEL

In this section, we briefly present the model used also in

Koukouloyannis et al.20 for the study of the dynamical

behavior of a system of three interacting vortices in quasi-

two-dimensional (pancake shaped) BEC. We consider two of

them having the same topological charge S1¼ S3¼ 1 while

the third has S2¼�1, following the experimental results of

Seman et al.18 In this case, if the vortices are well-separated,

they can be considered as point quasi-particles and the corre-

sponding normalized equations describing their motion are

_xi ¼ �Si
yi

1� r2
i

� c
XN

j¼1;j 6¼i

Sj
yi � yj

r2
ij

_yi ¼ Si
xi

1� r2
i

þ c
XN

j¼1;j6¼i

Sj
xi � xj

r2
ij

i; j ¼ 1; 2; 3;

(1)

where (xi, yi) stand for the coordinates of the i-th vortex

in the plane of motion, while ri ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

i þ y2
i

p
and rij

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi � xjð Þ2 þ yi � yjð Þ2

q
. The parameter c is connected to

the physical properties of the BEC and a typical value for it

has been estimated, e.g., by Navarro et al.16 to be c� 0.1.

The above equations have been rescaled so the Thomas-

Fermi radius of the BEC (which characterizes the radial

extent of the BEC) is RTF¼ 1. Consequently, 0 � ri < 1.

This system can be described by a three degrees of free-

dom Hamiltonian, where each pair of coordinates (xi, yi)

corresponds to one degree of freedom. The above equations

of motion for the particular choice of S1, S2, and S3 can be

derived by the Hamiltonian

H ¼ 1

2

X3

i¼1

lnð1� r2
i Þ þ

c

2
lnðr2

12Þ � lnðr2
13Þ þ lnðr2

23Þ
� �

; (2)

via the canonical equations _xi ¼ Si
@H
@yi
; _yi ¼ �Si

@H
@xi

.

Considering q ¼ ðx1; y2; x3Þ; p ¼ ðy1; x2; y3Þ, we acquire

the usual form of the canonical equations _qi ¼ @H
@pi
; _pi

¼ � @H
@qi

for the system’s evolution.

Applying two successive canonical transformations: (a)

ðxi; yiÞ7!ðwi;RiÞ defined by

qi ¼
ffiffiffiffiffiffiffi
2Ri

p
sinðwiÞ ; pi ¼

ffiffiffiffiffiffiffi
2Ri

p
cosðwiÞ; i ¼ 1; 2; 3; (3)

and (b) ðwi;RiÞ7!ð/1;2; #; J1;2; LÞ according to

/1 ¼ w1 � w3 J1 ¼ R1

/2 ¼ w2 þ w3 J2 ¼ R2

# ¼ w3 L ¼ R1 � R2 þ R3;
(4)

the Hamiltonian (2) assumes the form

H ¼ 1

2
lnð1� 2J1Þ þ lnð1� 2J2Þ þ lnð1� 2ðL� J1 þ J2ÞÞ½ �

þ c

2
lnð4J2 � 2J1 þ 2L� 4

ffiffiffiffiffi
J2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L� J1 þ J2

p
sinð/2ÞÞ

�

�lnð2Lþ 2J2 � 4
ffiffiffiffiffi
J1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L� J1 þ J2

p
cosð/1ÞÞ

þlnð2J1 þ 2J2 � 2
ffiffiffiffiffi
J1

p ffiffiffiffiffi
J2

p
sinð/1 þ /2ÞÞ �: (5)

Since the above Hamiltonian is autonomous, the energy of the

system, which is expressed by H, is conserved. In addition, #
is ignorable and consequently its conjugate generalized mo-

mentum L (4), the angular momentum of the system, is also an

integral of motion. Thus, Hamiltonian (5) can be considered as

a two degrees of freedom system with L as a parameter.

In what follows we use the value of the energy h of the

system and the value of the angular momentum L as

the main parameters of our study. Both values depend on the

particular vortex configuration, i.e., the set of initial condi-

tions of each orbit as h ¼ Hðx10; y10; x20; y20; x30; y30Þ and

L ¼ Lðx10; y10; x20; y20; x30; y30Þ.
Before we present our main results, we will briefly dis-

cuss the numerical methods of this study.

III. NUMERICAL METHODS

A. SALI

The most commonly used chaos indicator is the compu-

tation of the mLE,22–24 which is based on the evolution of

one deviation vector from the studied orbit. The main draw-

back for using the mLE is the long time needed for the index

to converge to its limiting value, especially for chaotic orbits

that stick close to regular ones for long times.

Many methods have been developed over the years that

overcome this problem and allow the fast and reliable char-

acterization of orbits as chaotic or regular, like the Fast

Lyapunov Indicator (FLI)25,26 and its variants,27,28 the
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SALI29 and the Generalized30 ALignment Index (GALI),

the Mean Exponential Growth of Nearby Orbits

(MEGNOs),31,32 the Relative Lyapunov Indicator (RLI),33,34

the Frequency Map Analysis,35,36 the 0–1 test,37,38 and the

Covariant Lyapunov Vectors (CLV) method.39,40 A concise

presentation of some of these methods, as well as a compari-

son of their performances can be found in the works of

Maffione et al.41 and Darriba et al.42 In our study, we will

use the SALI method, which proved to be an efficient indica-

tor of chaos. The SALI depends on the evolution of two ini-

tially different deviation vectors, which are repeatedly

normalized from time to time and checks whether they will

align (chaotic orbit) or not (regular orbit). It has been shown

that SALI tends exponentially fast to zero for chaotic orbits,

while it fluctuates around constant, positive values for regu-

lar ones.43,44 In practice, we require SALI to become smaller

than a very small threshold value (in our study, we set

SALIthres¼ 10�12) to characterize an orbit as chaotic. The

different behavior of the SALI for chaotic and regular orbits

makes it an efficient chaos indicator, as its many applications

to a variety of dynamical systems45–56 illustrate. Thus, SALI

constitutes an ideal numerical tool for the purposes of our

study, as its computation for a large sample of initial condi-

tions allows the construction of phase space charts (which

we will call “scan maps”) where regions of chaoticity and

regularity are clearly depicted and identified.

B. The scan map

In order to calculate a scan map, we first have to define a

Poincar�e surface of section (PSS).57 Since our Hamiltonian is

considered to be a two degrees of freedom one with L as a pa-

rameter, for the PSS to be defined, we have to consider fixed

values h and L for the energy and the angular momentum,

respectively. We also consider a constant value for /2, namely,

/2 ¼ p=2. In this way, the plane ð/1; J1Þ is defined as the

plane of the PSS and J2 is calculated at each point of the section

by (5). Note that the value of /2 ¼ p=2 corresponds to the con-

figuration where the S2 and S3 vortices lie on the half-line hav-

ing the center of the condensate on its edge as can be seen from

the transformations (3) and (4). The main motion of the vortices

is dictated by their gyroscopic precession which has as a result

vortices with opposite charge to rotate in different directions.

Consequently, as we can see from (4), the angle /2 will take

almost all the values, independently of the choice of the specific

orbit. Thus, the section which corresponds to /2 ¼ p=2 is

appropriate for revealing the system’s main dynamical features

as it is crossed by the vast majority of the permitted orbits.

Several PSSs obtained by this approach, for h¼�0.7475 and

various values of L are seen in the upper panels of Fig. 1.

In order to construct a scan map, like the ones shown in

the lower panels of Fig. 1, we select an equally spaced grid

of 300� 300 initial conditions ð/1; J1Þ on the PSS and com-

pute SALI for each orbit. We note that the integration of the

orbit and of the two deviation vectors needed for the

computation of the SALI is done by using the DOPRI853 in-

tegrator.61 When the value of SALI becomes

SALI < SALIthres ¼ 10�12, we consider SALI to practically

be zero and the corresponding orbit to be chaotic. We denote

the time needed for an orbit to reach this threshold

tS0
ð/10; J10Þ. The maximum integration time we consider is

tmax¼ 3000. If SALIðtmaxÞ > SALIthres, then the orbit is con-

sidered to be regular. In that case, we set tS0
to be tS0

¼ tmax.

Depending on the value of tS0
ð/10; J10Þ, we assign a color to

each point of the grid. In particular, darker colored points

correspond to orbits with smaller tS0
, while lighter colored

points correspond to orbits with larger tS0
. In this way, we

construct color charts of the PSS based on how fast the cha-

otic nature of an orbit is revealed. These scan maps clearly

show not only the regions where regular and chaotic motion

occurs, as the comparison with the PSS plots in the upper

panels of Fig. 1 easily verifies, but also indicate regions with

different degrees of chaoticity. Finer grids and longer inte-

gration times were also considered, but the results they pro-

vided were not significantly different from the ones

presented in Fig. 1, while the additional computational time

required was extremely longer. Hence, the choice of the

300� 300 grid and the value tmax¼ 3000 have been deemed

to be the most efficient in order to reveal the details of the

dynamical behavior of this system.

IV. RESULTS

A. Dynamical behavior of the system for h 5 20.7475

The dynamical behavior of Hamiltonian (5) has been

studied in Koukouloyannis et al.20 for the value of the energy

h¼�0.7475 and increasing values L of the angular momen-

tum. This behavior is summarized in Fig. 1, where various

PSSs are shown together with the corresponding scan maps.

This value of h refers to a “typical” configuration of the sys-

tem, i.e., a configuration where the vortices are well separated

and not close to the Thomas-Fermi radius. As it can be seen

from (4), since 0 < Ri < 0:5 the typical range of the values of

L is �0:5 < L < 1. But, since the energy constraint must also

be fulfilled, the range is actually smaller. In particular, for

h¼�0.7475, the range considered is �0:45 � L � 0:55.

For values L < �0:218, the system is fully organized fea-

turing only regular orbits as it can be seen in Fig. 1(a). For a

critical value of L ’ �0:218, the central periodic orbit desta-

bilizes through a pitchfork bifurcation, and a chaotic region is

subsequently created (Fig. 1(b)). This region gets wider as L
increases (Fig. 1(c)). For even larger values of L, the permitted

area of the PSS shrinks, as we will see in detail later on (Figs.

1(e) and 1(f)) and finally all the allowed configurations of the

system correspond to regular orbits, which are concentrated

around an orbit involving the collision of the vortices S1–S3.

In the corresponding scan maps, we observe some black

areas that represent rejected initial conditions of the grid.

There are three reasons to reject an initial condition on the

PSS. The first is that the specific point does not comply with

both the energy and angular momentum constraints of the

system. These are the upper and lower black areas in the

lower panels of Figs. 1(a)–1(e) and the large, central, black

area of Fig. 1(f). The second reason to exclude an initial con-

dition is if a particular configuration corresponds to a colli-

sion orbit, i.e., two vortices lie at the same point of the

configuration space (x� y). This state is meaningless both

physically and mathematically, since the energy of the
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system becomes infinite. This case is visible in Fig. 1(d)

where a horizontal black line is shown at J1¼ 0.25, which

corresponds to a collision between S2 and S3. The third rea-

son is purely physical: if the initial condition represents a

configuration in which the two co-rotating vortices S1 and S3

lie close to each other, these two vortices become “trapped”

in a motion where they rotate around each other. We refer to

this as the “satellite” regime. Additionally, if the distance

between them is too small ðr13 < 0:1Þ, our model does not

describe the dynamics accurately, as it was constructed under

the assumption that vortices behave like particles retaining

their structure unchanged, which of course is not true when

they acquire this level of proximity. So, in our study, we do

not try to tackle questions related to close encounters of the

vortices. This restriction corresponds to the small black areas

on the left and right end sides of the scan maps. In this

consideration, we have not excluded the cases where

the counter-rotating vortices come close to each other since

in this case they are not trapped in a rotation around each

other.

In this work, we are interested not only to see the gen-

eral dynamical behavior of the system, but in acquiring more

quantitative results than the ones described above, concern-

ing the permitted area of motion and the chaoticity percen-

tages of the system.

1. Permitted area of motion

The boundaries of the permitted areas in Fig. 1 are cal-

culated by the requirement that one of the vortices will pass

through the origin20 (Ri¼ 0). From the transformation (4),

we see that R2 has a negative contribution to L, while R1 and

FIG. 1. Poincar�e surfaces of section (upper panels) and the corresponding SALI scan maps (lower panels) of Hamiltonian (5) for energy h¼�0.7475 and varying

values of L [(a) L¼�0.25, (b) L¼�0.05, (c) L¼ 0.05, (d) L¼ 0.25, (e) L¼ 0.45, (f) L¼ 0.50]. In the PSSs, the thick black curves correspond to boundaries of

motion. In the scan maps, the black areas correspond to non-permitted orbits. The gray scale shown below the panels is used for coloring each permitted initial condi-

tion according to its tS0
value (see text for more details). So, dark colored points correspond to orbits with small tS0

(chaotic orbits) and light colored points correspond

to orbits with large tS0
(regular orbits). In the upper plots of panels (b) and (d), the initial conditions of some particular orbits studied in Sec. IV A are also indicated.
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R3 contribute positively. Thus, for low values of L, the S2

vortex is moving away from the origin and the boundaries

are determined by the R1¼ 0 and R3¼ 0 constraints. In par-

ticular, the former condition provides the J1loðR1¼0Þ ¼ 0

boundary, while the latter gives J2¼ J1� L. Since in each

panel of Fig. 1 we consider fixed values for h and L and in

addition we set /2 ¼ p=2 for the construction of the PSSs,

the Hamiltonian (5) provides an implicit relation J1upðR3¼0Þ
¼ J1up

ð/1; h; LÞ for the upper boundary of the permitted area.

On the other hand, for high values of L, the J1loðR2¼0Þ and

J1upðR2¼0Þ boundaries are both calculated by the constraint

R2¼ 0, through similar considerations.

The permitted area can now be numerically calculated

by the integral

Ap ¼
ð2p

0

J1up
� J1lo

� �
d/1: (6)

In (6), each point of J1up
and J1lo

is also calculated numeri-

cally through the implicit functions J1up
ð/1Þ and J1lo

ð/1Þ
mentioned above. The obtained results are reported in Fig. 2

by a solid line. For intermediate values of L, just after the

maximum of the curve Ap¼Ap(L), there is an ambiguity con-

cerning whether the boundary is determined by the constraint

R3¼ 0 or R2¼ 0, because for some values of /1, the bound-

ary is defined by the former, while for others it is defined by

the latter relation. In this region, we cannot calculate the size

of the permitted area by (6) and the calculation from the

PSSs is more reliable. In this case, we estimate the size of

the permitted area as the sum of the areas of all the small rec-

tangles of the grid on the PSS, which is also used in the scan

maps, and correspond to permitted orbits. The obtained

results are depicted by dots in Fig. 2. The two well computed

by (6) parts of Ap(L) are connected in this region by a dashed

straight line in order to obtain a continuous curve. It is worth

noting that even this rough approximation is in good agree-

ment with the results obtained by counting the permitted ini-

tial conditions on the PSS. The good agreement of the results

obtained by these two approaches indicates that the used grid

of initial conditions is satisfactorily dense for capturing the

dynamics of the system.

2. Regular and chaotic configurations

The chaotic or regular behavior of an orbit depends on

the configuration (initial position in the x–y plane of the

BEC) of the vortices. In Fig. 3, the configurations that corre-

spond to orbits on the PSS, which exhibit regular motion, are

shown. Since these configurations correspond to initial con-

ditions with /2 ¼ p=2 the S2 and S3 vortices lie on the same

half-line, while the S1 vortex can occupy various positions.

The initial positions of the S1, S2, and S3 vortices are

depicted in these figures by red, green, and blue colors,

respectively. The permitted area of motion of the S1 vortex is

defined by thick black lines. In general, the vortices in the

BEC can move up to the Thomas-Fermi radius, which is

equal to RTF¼ 1, but since we have fixed values of h and L
the actual permitted area is smaller.

In Fig. 3 (in direct comparison also with Fig. 1), it is

shown that for small values of L almost all of the permitted

area is occupied by regular orbits. As L increases, almost all

of the available configurations are chaotic; for L¼ 0.25, the

percentage of the chaotic orbits presents a local minimum,

and for values of L> 0.45, the permitted area shrinks signifi-

cantly and almost all the orbits become regular.

Let us look a bit closer at the relation between the initial

configuration of the vortices and the system’s dynamical

behavior by studying in more detail three representative

cases.

We start our analysis by considering L¼�0.05 for

which almost all initial vortex configurations (or initial con-

ditions) lead to regular motion (see Figs. 1(b) and 3(a)). In

Fig. 4(a), we consider an ensemble of initial configurations

in order to check the motion corresponding to it. In Fig. 4(b),

the time evolution of a representative orbit with /1 ¼ p and

J1¼ 0.1 is shown. The initial condition of this orbit corre-

sponds to point A in the PSS of Fig. 1(b). This is the case of

the “rotational” regime where all the vortices rotate around

the common center of rotation without any major disturban-

ces to their motion, producing regular behaviors. As we can

see, the areas the orbits of the individual vortices occupy are

distinct and do not mix. In this case, the vortices interact

weakly with each other and they are said to be in the

so-called “one–vortex” regime. In general, when an initial

configuration produces evolutions belonging to the

one-vortex regime, the resulting motion is regular.

The second case we examine is shown in Fig. 5. In this

case, the S1 and S3 vortices rotate around each other and both

of them around the center of rotation. The S2 vortex rotates

around the center as well but in the opposite direction

because of its opposite charge. This is the so-called

“satellite” regime. In this case, the two vortices interact more

strongly with each other while they exhibit a weak interac-

tion with the third one. As we can see in Fig. 5(b), the areas

of trajectories of S1 and S3 cover overlap but do not mix with

the one of S2. This dynamical regime is referred as the

“two–vortex” regime, which also results in regular motion.

The corresponding initial conditions of this orbit are depicted

in the PSS of Fig. 1(b) by the point B.

The next case we consider is the one with L¼ 0.25. For

this value of L, numerous chaotic as well as regular initial

FIG. 2. The permitted area of motion for h¼�0.7475 shown as a function

of L. The solid line represents the calculation of the area using (6). The dots

represent the results obtained by estimating the size of the permitted area as

the sum of the areas of all the small rectangles of the grid of the PSS which

correspond to permitted orbits. The dashed line connecting the two parts of

the solid curve corresponds to the region of the values of L in which there is

an ambiguity in the calculation of the area through (6) discussed in the text.
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configurations exist. In Fig. 6(a), the regular initial configu-

rations for J � 0:1 are depicted. In Fig. 6(b), the time evolu-

tion of a representative orbit of this ensemble with /1 ¼ p
and J1¼ 0.1 is depicted. The initial condition of this orbit is

depicted in the upper panel of Fig. 1(d) as point C. The tra-

jectories of the vortices clearly correspond to the “two–

vortex” regime since only two of them interact strongly. On

the other hand, in Fig. 6(c), the time evolution of an initial

configuration with /1 ¼ p and J1¼ 0.18 leading to chaotic

motion is shown. The initial condition is shown in Fig. 1(d)

as point D. Here, the strong interaction between all the vorti-

ces, which is generally necessary in order to have chaotic

motion, can be concluded by the fact that the orbits of all the

vortices mix with each other.

3. Consideration of an alternative tmax based on the
physical aspects of the system

Let us now study in more detail the system’s chaotic

behavior. Since the physical model from which this study

FIG. 3. Initial configurations which result to regular motion for h¼�0.7475 and various values of L. The initial positions of S1, S2, and S3 vortices are repre-

sented by red, green, and blue colors, respectively. Since the configurations correspond to orbits on the PSS ð/2 ¼ p=2Þ the S2 and S3 vortices lie on the same

semi-axis and some of the green dots may be indistinguishable. The permitted area of motion of S1 is depicted by a thick black line. It can be easily seen that it

is smaller than the disk defined by the Thomas-Fermi radius RTF¼ 1.

FIG. 4. (a) A fraction of the regular

initial configurations in the L¼�0.05

case which corresponds to the

“rotational” regime. (b) The time evo-

lution of a representative orbit of this

regime with /1 ¼ p and J1¼ 0.1. We

can see that the trajectories do not

intersect each other, so the dynamics

belongs to the “one–vortex” regime.
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has been motivated is a Bose-Einstein condensate, which has

a limited life time (commonly of the order of a few seconds

to a few tens of seconds), there are some associated consider-

ations to be kept in mind. In particular, in our set up, the con-

densate’s life time is of the order of a few hundreds up to

one thousand time units.

We thus need to explore the implications that this physi-

cally induced time limit has. In order to address this question

we consider in Fig. 7 the scan map for h¼�0.7475 and

L¼�0.03. This map was constructed similarly to the ones

of Fig. 1. The connected chaotic region in the center of this

plot (dark gray points) can be constructed by any orbit start-

ing in it. Nevertheless, depending on where we choose the

initial condition of this orbit, the time in which its chaotic

behavior is revealed varies. This becomes evident from the

results of Fig. 8 where the plot of Fig. 7 is decomposed into

four regions depending on the tS0
values of the initial condi-

tions. In particular, we consider points with tS0
2 ½140; 500�

(Fig. 8(a)), tS0
2 ð500; 1000� (Fig. 8(b)), tS0

2 ð1000; 1500�
(Fig. 8(c)), and tS0

2 ð1500; 2000� (Fig. 8(d)). From these fig-

ures, we can conclude that as we move further from the cen-

ter of the x-shaped region the orbits become “stickier” and

thus they require more time to reveal their chaotic nature.

These orbits involve predominantly two-vortex dynamics

during earlier stages of the evolution, while at later stages all

three vortices are interacting with each other, leading to the

associated observed chaotic features. Since the typical life-

time of the BEC is a few hundred time units, a good candi-

date for a physically meaningful integration time would be

tmax¼ 500. In this way, chaotic orbits, which reveal their

FIG. 5. (a) A fraction of the regular

initial configurations in the L¼�0.05

case which corresponds to the

“satellite” regime. (b) The time evolu-

tion of a representative orbit of this re-

gime with /1 ¼ 0 and J1¼ 0.08. We

can see that S1 and S3 interact strongly

with each other but their orbits do not

intersect that of S2, so we are inside the

“two–vortex” regime.

FIG. 6. (a) A fraction of the regular initial configurations in the L¼ 0.25 case which corresponds to J1 � 0:1. (b) The time evolution of a representative orbit

of this regime with /1 ¼ p and J1¼ 0.1, which corresponds to a “two–vortex” configuration. (c) The time evolution of the chaotic orbit with /1 ¼ p and

J1¼ 0.18. The trajectories of all vortices are mixing with each other, leading to chaotic behavior.

FIG. 7. Scan map for h¼�0.7475 and L¼�0.03. Dark colored points cor-

respond to orbits with small tS0
(chaotic) and light colored points correspond

to orbits with large tS0
(regular). This correspondence is also shown in the

given legend.
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nature later than this time, can be considered, from a practi-

cal point of view, as regular. For instance, in real experi-

ments, one would expect to detect chaotic motion in the

limited time that the experiment lasts, only in regions with

small tS0
. In our case, such orbits are the ones plotted in Fig.

8(a), whose initial conditions are located close to the center

of the x-shaped chaotic region. Thus, the need for efficient

chaos indicators, capable of determining the nature of the

orbits in potentially shorter, physically meaningful time

intervals is of considerable importance. The SALI can

successfully play this role, since it can reveal the larger part

of the chaotic region of the system, even for tS0
¼ 500, as

can be seen in Fig. 8 and will be also shown in Sec. IV A 4

through Fig. 9. On the other hand, the mLE would require at

least an order of magnitude larger integration times in order to

acquire decisive results, which is both physically irrelevant

and Central Processing Unit time (CPU-time) consuming.

In what follows we will both use tmax¼ 3000 in order to

reveal the full dynamics of the system and tmax¼ 500 in

order to determine its “practical” dynamical behavior. The

different choices of tmax will be clearly indicated.

4. Chaoticity percentages

In order to have a complete picture of the evolution of

the chaotic region for varying L we calculated, using the

SALI, the percentage of the chaotic orbits over the permitted

ones (Fig. 9). For this calculation, we used both tmax¼ 500

as well as tmax¼ 3000. We can see that the percentage of the

chaotic region is larger when tmax is larger, since some of the

sticky orbits are now characterized as chaotic, but the gen-

eral behavior does not change significantly. By examining

Fig. 3, the results of Fig. 9 can be easily understood. As was

previously explained, for small L ðL � �0:05Þ the initial

configurations correspond to either the one- or the two-

vortex regime, which leads to regular motion. As L increases

FIG. 8. The decomposition of Fig. 7 for various intervals of tS0
. We see that as tS0

increases the corresponding points of the scan map lie further away from the

center of the x-shaped chaotic region and their number decreases.

FIG. 9. The percentage PC of initial conditions leading to chaotic orbits over

the total number of permitted ones with respect to the value of L for

h¼�0.7475. The solid line represents the results for tmax¼ 500, while the

dashed one corresponds to tmax¼ 3000. We observe that the main character-

istics of PC are the same in both cases.
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the orbit of either S1 or S3 lies further from the rotation cen-

ter than before. There, it approaches the orbit of S2, causing

strong interactions between all three vortices through sling-

shot effects, which result in a maximization of the chaotic

region at L¼ 0.05. As the value of L increases further, one of

the S1, S3 vortices can lie far enough from the other two in

order for the system to have two-vortex configurations, caus-

ing in this way the local minimum of the chaotic percentage

for L¼ 0.25 observed in Fig. 9. At L¼ 0.35, we obtain a sec-

ondary maximum of the chaoticity percentage. This maxi-

mum corresponds to the range of L values just after the

maximum of the permitted area (Fig. 2), where the ambiguity

in the calculation of Ap occurs. This happens because at this

L value the upper boundary of the permitted area is defined

by both the R1¼ 0, R3¼ 0, and R2¼ 0 constraints, which

means that the orbit of either S1 or S3 is close to the one of

S2, causing again strong interactions between all three vorti-

ces and thus leading to chaotic behavior. For L¼ 0.45 both

vortices with positive charge lie at a large distance from the

center (nevertheless comparable to the one of S2) but, at the

same time, the permitted area of motion has decreased,

which allows mainly configurations with strong interactions

between all three vortices. This behavior leads to the maxi-

mization of the chaotic region. Finally, for even larger values

of L (L> 0.45), the permitted area of S1 and S3 becomes very

narrow and is located far away from the S2 vortex, leading to

two-vortex configurations and consequently to the minimiza-

tion and eventual disappearance of the chaotic region.

B. Global dynamics for 21:1 £ h £ 20:5

Based on the detailed analysis presented for the repre-

sentative case of h¼�0.7475, we perform a global study of

the system’s dynamical behavior for energy values in the

range �1:1 � h � �0:5 in order to discover if the system

exhibits similar behaviors. This range is assumed to contain

all the physically meaningful energy values of the system.

1. Permitted area of motion

The calculations of the permitted areas of motion, which

are shown in Fig. 10, have been done in a similar way as the

one described in Sec. IV A 1. As we can see, the curves in all

panels follow a similar pattern. For L � � 0:4 no orbits

exist, as no initial conditions satisfy both the h and L restric-

tions. As L increases (up to L � 0:15� 0:35 depending on

h), the size of the permitted area grows larger as the

J1upðR3¼0Þ curve moves upwards in Fig. 1. For large values of

L (L � 0:25� 0:45 depending on h), the boundaries are

defined by the constraint R2¼ 0. As L increases even further,

the permitted area shrinks because the boundaries defined by

J1upðR2¼0Þ and J1loðR2¼0Þ come closer. The dashed line corre-

sponds to the intermediate values of L, where the ambiguity

in the calculation of Ap(L) occurs (similarly to Fig. 2). Even

for these values of L, this rough approximation is again very

close to the results obtained by the scan maps.

By examining the sequence of plots of Figs. 10(a)–10(f),

we conclude that the total area of permitted orbits decreases

as h increases.

2. Chaoticity percentages

We calculate the percentage, PC, of initial conditions

leading to chaotic motion, within the set of the permitted ini-

tial conditions of the corresponding grid for �1:1 � h �
�0:5 and �0:2 � L � 0:6, setting tmax¼ 500. The obtained

results are plotted in Fig. 11 by solid lines. Again, resetting

the final integration time to tmax¼ 3000 (dashed curves in Fig.

11), no significant differences are observed. The percentages

slightly increase because some “sticky” chaotic orbits are now

characterized as chaotic, but apart from that the obtained

curves are very close to the ones constructed for tmax¼ 500.

There seems to exist the same trend for all different val-

ues of the energy as already discussed in Sec. IV A 2 for

h¼�0.7475. For small values of the angular momentum

FIG. 10. Results similar to the ones of Fig. 2 for various values of h.
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ðL � � 0:2Þ, no chaotic orbits exist. As L increases, PC

increases rather quickly and after an interval where it retains

considerably high values, it drops down. Finally, PC vanishes

for large values of L (L � 0:4� 0:6 depending on h), while

at the same time the number of permitted initial conditions

in the phase space shrinks (Fig. 10). The values of L for

which the chaotic region appears (denoted Lc) and disappears

(denoted Ld) depend on the particular value of the energy h.

It is interesting to note that within this interval there is at

least one local minimum, implying a local maximum in the

fraction of regular trajectories.

Our results show that the range Ld� Lc is larger for

lower energies. This is related to the size of the permitted

PSS area, which is also larger when h is smaller (Fig. 10).

The appearance of the chaotic region seems to happen at

about the same value L � �0:1, for all h values, but the

eventual shrinking and disappearance of this region varies

from Ld � 0:4 for h¼�0.5 (Fig. 11(f)) to Ld � 0:7 for

h¼�1.1 (Fig. 11(a)). Presumably, the invariance of the

onset of chaoticity is because of the weak h dependence on

the critical value Lc for which the central stable periodic

orbit undergoes a pitchfork bifurcation. This bifurcation gen-

erates the x-shaped chaotic region (Fig. 1(b)), which leads to

the onset of chaoticity.

In addition, we observe smaller percentages of chaotic

motion altogether for lower energies. While the maximum per-

centage for h¼�0.5 is �100% (Fig. 11(f)), the one for

h¼�1.1 is just �70% (Fig. 11(a)). This behavior can be

explained as follows. As we have seen in Fig. 10, the higher the

energy of the vortices, the smaller the permitted area of motion

becomes. Consequently, the orbits of the vortices come closer

and the interaction among all three of them becomes stronger,

which in turn leads to the enhancement of the chaotic behavior.

We also observe in the panels of Fig. 11 that the

“secondary” local maximum between the two “main” local

maxima is more pronounced for low energies, for example,

it has the same height as the two “main” maxima for

h¼�1.1 (Fig. 11(a)), while it becomes less distinct as the

value of h increases, and practically disappears for h¼�0.5

(Fig. 11(f)). This happens because, as the value of h
increases, the overall percentages of the chaotic orbits

increase. Consequently, this phenomenon becomes less sig-

nificant and eventually not observable.

We believe that this analysis, based on the SALI, offers

a systematic view of the PSS and the fraction of accessible

orbits in it (as per Fig. 10), as well as of the fraction of cha-

otic orbits in it (as per Fig. 11) and how these change as a

function of the canonical physical properties of the system,

namely, its energy and its angular momentum.

V. CONCLUSIONS—FUTURE DIRECTIONS

In the present work, we explored a theme of current inter-

est within the research of atomic BECs, namely, the recently

realized experimentally tripoles of vortices and their associated

nonlinear dynamical evolution. We found that this Hamiltonian

system is arguably prototypical (at least within the realm of iso-

tropic magnetic traps) in its exhibiting chaotic dynamics as pa-

rameters or initial conditions are varied. We focused here on

the variation of initial conditions, through the variation of asso-

ciated conserved quantities such as the energy and the angular

momentum. Our aim was to associate a technique that has been

previously used in a variety of other low dimensional settings,

namely, the SALI diagnostic, for efficiently measuring the cha-

oticity of the orbits, within this atomic physics realm of vortex

dynamics, under their mutual interactions and their individual

precession within the parabolic trap. We found that the SALI is

a very accurate diagnostic of the different levels of chaoticity

of the system and enables a qualitative understanding of how

this chaoticity changes as the conserved quantities are varied,

as well as a quantification of the chaotic fraction of the phase

space of the system.

This work paves the way for the consideration of a wide

range of additional problems within the dynamics of coherent

structures in the realm of Bose-Einstein condensates. First of

all, it would be straightforward to explore how the dynamics

FIG. 11. Results similar to the ones of Fig. 9 for various values of h.
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of this tripole would compare/contrast to the recently

explored16 dynamics of 3 co-rotating vortices (i.e., vortices of

the same charge). Another natural extension in the vortex case

would be to examine how the chaotic region expands as a

fourth vortex of either a positive or a negative charge comes

into play. The special cases of 4 co-rotating vortices (with rel-

evant square, rhombic, etc., stable configurations), as well as

the case of the generally fairly robust58 vortex quadrupole

would be of interest in this setting. Additionally, extending

such considerations to other dimensions would present inter-

esting possibilities as well. On the one hand, a wide range of

theoretical and experimental considerations (including particle

based approaches, such as the ones utilized herein) have been

developed for dark solitons in 1d; see, e.g., the recent review

of Frantzeskakis.59 On the other hand, generalizing to 3

dimensions and the consideration of multiple vortex rings and

their dynamics60 would be equally or even more exciting from

the point of view of ordered vs. chaotic dynamics.

Examination of these directions is currently in progress and

will be reported in future publications.
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